An Irregular Tessellated Surface Model
Map Algebra to Define Flow Directions
and Delineate Watershed Boundaries
Using LiDAR Bare Earth Sample Points

Gerry Gabrisch
GIS Manager, Lummi Nation
Bellingham Washington
Outline

Background Information
Data
Motivation

Methods
Python Algorithms
Flow Directions
Basin Delineation
Sink to Basin Aggregation
Sink-in-Sink to Basin Aggregation

Results & Future Work
Raster results vs. TIN results.
Study Area and Data

- 2005 LiDAR Data
 - Horizontal Accuracy +/- 15 – 40 cm
 - Vertical Accuracy +/- 20 - 60 cm
 - 49,000,000 million sample points
 - Samples per 100 ft² = 5
 - 2 ft Contour National Map Accuracy Standards
 - Washington State Plane North (Feet)

- Hydrography (lines)

- Culvert Locations (points)
Raster Surface Model
Flow Comparison

Vertical Relief = 17 ft

Flow Accumulation
3 foot DTM

Flow Accumulation
1 foot DTM
Error Introduced by the DTM

• Interpolation From Sample Points
 • Over Estimations of Cell Values.
 • Underestimation of Cell Values.

• Fill Tools Results in Flat Areas.

• Flow Direction Constraints (D8 Algorithm)
• D8 fails on flat surfaces
Flow Directions From Irregular Tessellated Surfaces

- Voronoi
 - Size Limit on Voronoi Surface
 - Geometry Overburden

- TIN
 - Same Spatial Relationship Between Points
 - Minimal Geometry Overburden
Flow Direction

- Created using Python.
- TIN Edges Geometry Include x, y, z Values of Line Ends.
- X, Y, Z of line ends are use to calculate distances and slopes.
- Lines are sorted base on from node x, y and slope.
- For each node, identify the steepest path out.
- Write results to a new feature class.
TIN with Flow Directions

• From Node –
 To Node == flow directions.

• Each line == record in a feature class
Basin Delineations

• Identify nodes with no outflow (sink bottoms, or pour points)

• Group connected flow direction lines and assign a basin ID.

• Spatially join TIN triangles to grouped basin lines.

• For triangles joined to 2 or more basins, export vertices.

• Create Voronoi diagram.

• Join to flow direction lines (basin grouped) to Voronoi Diagram

• Dissolve by basin ID.
Flow Directions Grouped By Basin

- Flow lines grouped by connectivity
- Assigned a nominal ID for each basin
TIN Triangles Joined With Two or More Basin Flow Paths

- TIN Triangle between basin lines identified
- Used to extract vertices
Voronoi Polygons From TIN Triangles Vertices Joined With Two or More Basins

- Spatially joined with flow direction lines
Final Basin Delineation

- Some lines intersect or cross basin boundaries
Final Basin Delineation

• Area with low spatial relief result in a large number of sinks
Sinks

- Identify basins not touching convex hull.
- Select TIN edges intersecting crossing sink basins.
- Find lowest path out of each sinks.
- Collect the FIDs of all basins connected by lines. Merge basins.
Final Basin Delineation

- Sinks with flow path out of sinks.
- Identify the basin ID for each lines to-from nodes
- Reassign basin identifiers
Final Basin Delineation

- Final basin delineation and 4 raster delineations
Comparison of Low Relief Surface Models

Pixel Size = 2 ft x 2 ft
Relief = <10 feet.
Comparison of Low Relief Surface Models

Pixel Size = 2 ft x 2 ft

Relief = <10 feet.
Comparison of Low Relief Surface Models

Pixel Size = 30 ft x 30 ft

Generated from 12500 points

Relief = <10 feet.

Basins From a 30 x 30 ft Surface Model
Comparison of Low Relief Surface Models

Pixel Size = 3 ft x 3 ft

Generated from 12500 points

Relief = <10 feet.

Basins From a 3 x 3 ft Surface Model
Comparison of Low Relief Surface Models

Generated from a 12500 node TIN

Relief = <10 feet.

Basins From TIN with ~12500 nodes
Raster VS TIN

• Raster is Faster, Vector is ‘Corrector’

• Raster = LiDAR 3 ft DTM to basins in ~1 day

• Raster = interpolation and cell size return different delineations.

• Vector = Best delineation given the LiDAR data.

• Vector = ~2000 node TIN to basins in minutes

• Vector = ~10000 node TIN to basins in an hour

• Vector = ~75000 node TIN to basins in 24 hours
References

